61 research outputs found

    Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells

    Get PDF
    Abstract To transfer genes into airway epithelial cells, we have generated auxotrophic dap Escherichia coli BM2710 mutant that expresses the invasin of Yersinia pseudotuberculosis and the listeriolysin of Listeria monocytogenes. E. coli BM2710 harboring a plasmid carrying the gfp gene was incubated with immortalized normal or cystic fibrosis (CF) airway epithelial cells or with primary bronchial epithelial cells grown as an explant-outgrowth cell culture model. Approximately 2% of immortalized cells expressed GFP. Few primary cells were transfected that were always poorly differentiated and located at the edge of the outgrowth. This was consistent with the expression of h1-integrins only on these cells and with the required interaction for cell entry of E. coli expressing the invasin with h1-integrins. The subsequent intracellular trafficking of E. coli BM2710 studied by confocal and electronic microscopy showed that the E. coli-containing phagosomes rapidly matured into phagolysosomes. This is the first demonstration that recombinant bacteria are able to transfer genes into primary airway epithelial cells, provided that they are able to invade the cells

    Use of a dual reporter plasmid to demonstrate bactofection with an attenuated aroa- derivative of Pasteurella multocida b:2

    Get PDF
    A reporter plasmid pSRG has been developed which expresses red fluorescent protein (RFP) from a constitutive prokaryotic promoter within Pasteurella multocida B:2 and green fluorescent protein (GFP) from a constitutive eukaryotic promoter within mammalian cells. This construct has been used to determine the location and viability of the bacteria when moving from the extracellular environment into the intracellular compartment of mammalian cells. Invasion assays with embryonic bovine lung (EBL) cells and an attenuated AroA- derivative of Pasteurella multocida B:2 (strain JRMT12), harbouring the plasmid pSRG, showed that RFP-expressing bacteria could be detected intracellularly at 3 h post-invasion. At this stage, some EBL cells harbouring RFP-expressing bacteria were observed to express GFP simultaneously, indicating release of the plasmid into the intracellular environment. At 5 h post-invasion, more EBL cells were expressing GFP, while still harbouring RFP-expressing bacteria. Concurrently, some EBL cells were shown to express only GFP, indicating loss of viable bacteria within these cells. These experiments proved the functionality of the pSRG dual reporter system and the potential of P. multocida B:2 JRMT12 for bactofection and delivery of a DNA vaccine

    Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    Get PDF
    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes

    Patterning Bacterial Communities on Epithelial Cells

    Get PDF
    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibrio bacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactionsopen3

    Prodrug converting enzyme gene delivery by L. monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p

    The influence of the accessory genome on bacterial pathogen evolution

    Get PDF
    Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution

    Selective cyclooxygenase-2 silencing mediated by engineered E. coli and RNA interference induces anti-tumour effects in human colon cancer cells

    Get PDF
    Colorectal cancer (CRC) has an elevated incidence worldwide and represents one of the most aggressive human tumours. Many experimental data provide the evidence of a strong association between cyclooxygenase-2 (COX-2) enzyme overexpression and colon tumorigenesis. Furthermore, it has been demonstrated that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs, a class of COX-2 inhibitors), partially protects patients from CRC development and progression. Unfortunately, NSAIDs have been shown to induce severe side effects in chronically treated patients and, therefore, new strategies for selective COX-2 blockade are needed. In this paper we present an innovative COX-2 silencing approach mediated by RNA Interference (RNAi) which is a mechanism we have already described as a powerful tool to knockdown COX-2 protein in CRC cells. In particular, we developed an improved method to gain a highly selective COX-2 silencing in CRC cells by a tumour-dependent expression of anti-COX-2 short hairpin RNA (shCOX-2). Moreover, we efficiently delivered shCOX-2 expressing vectors in CRC cells, in vitro and ex vivo, by using engineered Escherichia coli strains, capable of infecting and invading human tumour cells (InvColi). Combining the highly selective shCOX-2 expression and the delivery of COX-2 silencers mediated by InvColi strains, we obtained a strong reduction of both proliferative and invasive behaviour of tumour cells and we also confirmed the pivotal role of COX-2 overexpression for the survival of CRC cells. Finally, ex vivo data showed a global anti-inflammatory and anti-tumour effect elicited by COX-2 silencing

    High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    Get PDF
    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation
    corecore